Polyester

From CAMEO
Jump to navigation Jump to search

Description

Polyester is a class of polymers that contains ester in its main functional group (which means that at least one hydroxyl group is replaced with an alkoxy group). Polyesters are widely used in the clothing and textile industries, as well as packaging, consumer goods, and more. Polyesters may be thermoplastic or thermoset, often depending on the ester group attached to the polymer chain. See Polyester fiber, Polyester film, or Polyester resin.

Table of Selected VTypes of Polyesters
Polymer Name Common or
Commercial Names
Potential Concerns Links
Polybutylene succinate (PBS) 1 Biodegradable Wikipedia
Plybutylene terephthalate (PBT) 2 4 Polybutylene terephthalate
Polycarbonate (PC) 3 6 Polycarbonate
Polycaprolactone (PCL) Varaform Biodegradable Wikipedia
Polyethylene adipate (PEA) 4 8 Wikipedia
Polyethylene naphthalate (PEN) Advance Photo System film 10 Wikipedia
Polyethylene terephthalate (PET) Polyester fiber; Melinex, Mylar, Dacron, Terylene, Teijin Fibers [[Polyethylene terephthalate[1]]]
Polyglycocide or polyglycolic acid (PGA) Dexon, Vicryl Biodegradable Wikipedia
Polyhydroxyalkanoates (PHA) Biopol Biodegradable Wikipedia
Polyhydroxybutyrate (PHB) 4 Biodegradable 12
Polylactic acid (PLA) 3 Biodegradable Polylactic acid
Polytrimethylene terephthalate (PTT) 4 8 Wikipedia
Vectran LCP) Liquid Crystal Polymer 10 Wikipedia
  1. While this may be a commonly applied term for PET, the use of “polyester” as a synonym for PET is an oversimplification. Always clarify which polyester is used in a product if on a product page it is only listed as “polyester”.

Applications

Personal Risks

Environmental Risks

Collection Risks

The risk to collections is entirely dependent on which polyester is in use.

The biodegraded polymers have the risk of attracting pests and giving off volatile organic compounds that may be damaging.

The polyester terephthalate polymers generally are stable, and are typically useful vapor barriers. However this vapor barrier may trap damaging gases or water with an at risk object (McGath, 2017, Hall 2019) Additionally, there are instances where PET has been engineered to be acidic (https://www.innovationintextiles.com/skin-friendly-polyester-has-stable-ph-level/)

Physical and Chemical Properties

Resources and Citations

  • Contributions: Molly McGath, AIC Plastics Panel, 2020.
  • McGath MK, Hall AKI, Zaccaron S, Wallace J, Minter WD, Mcguiggan PM (2017). Stewing in its own juices? The permeability of PET by water and acetic acid. Restaurator 38(4). 355-382.
  • Hall AKI, McGath MK, Minter WD, McGuiggan PM (2020). The breathability of PET to water vapor: Thickness effects. Journal of the American Institute for Conservation 59(1). 40-52.

Retrieved from "https://cameo.mfa.org/index.php?title=Polyester&oldid=87578"