Difference between revisions of "Polyester fiber"

From CAMEO
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[File:1998.239-SC10631.jpg|thumb|]]
+
[[File:1998.239-SC10631.jpg|thumb|Flying saucer dress<br>MFA# 1998.239]]
 
== Description ==
 
== Description ==
 
+
[[File:2004.691-SC130770.jpg|thumb|Polyester knit dress<br>MFA# 2004.691]]
 +
[[File:Polyester 200x PP.POL.jpg|thumb|Polyester fibers at 200x Transmitted light (left) Polarized light (right)]]
 
A manufactured fiber in which the fiber-forming substance is any long chain synthetic polymer composed of at least 85% by weight of an ester of dihydric alcohol and terephthalic acid (Federal Trade Commission definition). The first viable polyester fiber (Terylene) was developed by English chemists, J. R. Whinfield, and J.T. Dickson, in 1941. It was first sold in the U.S. as Dacron in 1951 and is now the most widely used fiber, even surpassing cotton. Polyester is strong and resistant to shrinking, stretching, creasing, insects and most chemicals. The specific properties, however, vary significantly depending on the type of polyester fiber. Many are modified to increase flame, crush or oil resistance. The fiber cross section is often made into different shapes to change the feel and appearance of the fibers. Polyester is primarily used in clothing and home furnishings. It is often blended with [[wool]], [[cotton]], [[rayon fiber|rayon]], or [[flax]].
 
A manufactured fiber in which the fiber-forming substance is any long chain synthetic polymer composed of at least 85% by weight of an ester of dihydric alcohol and terephthalic acid (Federal Trade Commission definition). The first viable polyester fiber (Terylene) was developed by English chemists, J. R. Whinfield, and J.T. Dickson, in 1941. It was first sold in the U.S. as Dacron in 1951 and is now the most widely used fiber, even surpassing cotton. Polyester is strong and resistant to shrinking, stretching, creasing, insects and most chemicals. The specific properties, however, vary significantly depending on the type of polyester fiber. Many are modified to increase flame, crush or oil resistance. The fiber cross section is often made into different shapes to change the feel and appearance of the fibers. Polyester is primarily used in clothing and home furnishings. It is often blended with [[wool]], [[cotton]], [[rayon fiber|rayon]], or [[flax]].
  
 
For polyester fiber identification, see http://cameo.mfa.org/wiki/Category:FRIL:_Polyester
 
For polyester fiber identification, see http://cameo.mfa.org/wiki/Category:FRIL:_Polyester
 
[[File:2004.691-SC130770.jpg|thumb|]]
 
 
 
== Synonyms and Related Terms ==
 
== Synonyms and Related Terms ==
  
polyester fibre; Dacron (originally called Fiber V) [DuPont]; Terylene [ICI];  Avlin; Beaunit; Tergal [Rhone-Poulenc]; Teteron; Trevira; Crimplene; Diolene;   Fortrel [Wellman]; Grilene; Terital; Pellon; Reemay; Kodel [Eastman Chemical];   polyethylene terephthalate; PET; Encron; Spectran; Zephran; Polyester (Deut.); polister (Esp.); polyester (Fr., Sven.); poliestry(Pol.);
+
polyester fibre; Dacron (originally called Fiber V) [DuPont]; Terylene [ICI];  Avlin; Beaunit; Tergal [Rhone-Poulenc]; Teteron; Trevira; Crimplene; Diolene; Fortrel [Wellman]; Grilene; Thermoloft; Microloft; Terital; Pellon; Reemay; Kodel [Eastman Chemical]; polyethylene terephthalate; PET; Encron; Spectran; Zephran; Polyester (Deut.); polister (Esp.); polyester (Fr., Sven.); poliestry(Pol.);
 
 
==Applications==
 
  
== Risks ==
+
== Risks ==
  
Polyester is difficult to ignite.  Burns with a shiny, yellow-orange, sooty flame and sweet smell.  Self-extinguishing when flame source is removed.  Ash is hard.
+
* Degrades in direct sunlight.
 +
* Resistant to insects and microorganisms. 
 +
* Absorbs and holds oils. 
 +
* Builds up static charge.
 +
* Polyester is difficult to ignite.   
 +
* Burns with a shiny, yellow-orange, sooty flame and sweet smell.   
 +
* Self-extinguishing when flame source is removed.   
 +
* Ash is hard.
  
 
[[[SliderGallery rightalign|dacron200m.jpg~SEM|polyester200mm.jpg~SEM|polyester400mm.jpg~SEM|polyesterfibvt.jpg~SEM]]]
 
[[[SliderGallery rightalign|dacron200m.jpg~SEM|polyester200mm.jpg~SEM|polyester400mm.jpg~SEM|polyesterfibvt.jpg~SEM]]]
Line 35: Line 38:
 
| 1.54, 1.72
 
| 1.54, 1.72
 
|}
 
|}
 
== Hazards and Safety ==
 
 
Degrades in direct sunlight. Resistant to insects and microorganisms.  Absorbs and holds oils.  Builds up static charge.
 
 
== Additional Information ==
 
 
M. Joseph, ''Introductory Textile Science'', Holt Reinhold &amp; Winston, Fort Worth, 1986, p. 135.  G.Cook, ''Handbook of Textile Fibres:II. Man-made Fibres, 5th edition, Merrow Publishing Co., Durham, England, 1984. p.328 ''
 
  
 
== Comparisons ==
 
== Comparisons ==
Line 49: Line 44:
  
 
[[media:download_file_391.pdf|Fiber Burn Tests]]
 
[[media:download_file_391.pdf|Fiber Burn Tests]]
 
 
  
 
== Additional Images ==
 
== Additional Images ==
  
 
<gallery>
 
<gallery>
File:Polyester 200x PP.POL.jpg|Polyester fibers
 
 
File:211-2250100.jpg|Reemay Spunbonded Polyester
 
File:211-2250100.jpg|Reemay Spunbonded Polyester
 
File:polyester.jpg|Polyester fabric
 
File:polyester.jpg|Polyester fabric
Line 61: Line 53:
 
</gallery>
 
</gallery>
  
 +
== Resources and Citations ==
 +
 +
* M. Joseph, ''Introductory Textile Science'', Holt Reinhold &amp; Winston, Fort Worth, 1986, p. 135. 
  
== Sources Checked for Data in Record ==
+
* G.Cook, ''Handbook of Textile Fibres:II. Man-made Fibres, 5th edition, Merrow Publishing Co., Durham, England, 1984. p.328 ''
  
* G.S.Brady, G.S.Brady, ''Materials Handbook'', McGraw-Hill Book Co., New York, 1971  Comment: p. 626
+
* G.S.Brady, ''Materials Handbook'', McGraw-Hill Book Co., New York, 1971  Comment: p. 626
  
* Marjorie Shelley, Marjorie Shelley, ''The Care and Handling of Art Objects'', The Metropolitan Museum, New York, 1987
+
* Marjorie Shelley, ''The Care and Handling of Art Objects'', The Metropolitan Museum, New York, 1987
  
* Richard S. Lewis, Richard S. Lewis, ''Hawley's Condensed Chemical Dictionary'', Van Nostrand Reinhold, New York, 10th ed., 1993
+
* Richard S. Lewis, ''Hawley's Condensed Chemical Dictionary'', Van Nostrand Reinhold, New York, 10th ed., 1993
  
* Hoechst Celanese Corporation, Hoechst Celanese Corporation, ''Dictionary of Fiber & Textile Technology'' (older version called Man-made Fiber and Textile Dictionary, 1965), Hoechst Celanese Corporation, Charlotte NC, 1990
+
* Hoechst Celanese Corporation, ''Dictionary of Fiber & Textile Technology'' (older version called Man-made Fiber and Textile Dictionary, 1965), Hoechst Celanese Corporation, Charlotte NC, 1990
  
* Rosalie Rosso King, Rosalie Rosso King, ''Textile Identification, Conservation, and Preservation'', Noyes Publications, Park Ridge, NJ, 1985
+
* Rosalie Rosso King, ''Textile Identification, Conservation, and Preservation'', Noyes Publications, Park Ridge, NJ, 1985
  
* Matt Roberts, Don Etherington, Matt Roberts, Don Etherington, ''Bookbinding and the Conservation of Books: a Dictionary of Descriptive Terminology'', U.S. Government Printing Office, Washington DC, 1982
+
* Matt Roberts, Don Etherington, ''Bookbinding and the Conservation of Books: a Dictionary of Descriptive Terminology'', U.S. Government Printing Office, Washington DC, 1982
  
 
* ''Identification of Textile Materials'', The Textile Institute, Manchester, England, 1985
 
* ''Identification of Textile Materials'', The Textile Institute, Manchester, England, 1985
Line 80: Line 75:
 
* ''The American Heritage Dictionary'' or ''Encarta'', via Microsoft Bookshelf 98, Microsoft Corp., 1998
 
* ''The American Heritage Dictionary'' or ''Encarta'', via Microsoft Bookshelf 98, Microsoft Corp., 1998
  
* Website address 1, Website address 1  Comment: www.fabrics.net
+
* Website: www.fabrics.net
  
* Wikipedia, the free encyclopedia, at http://www.wikipedia.com  Comment: http://en.wikipedia.org/wiki/Polyester (Accessed Feb. 10, 2006)
+
* Wikipedia: http://en.wikipedia.org/wiki/Polyester (Accessed Feb. 10, 2006)
  
  
  
 
[[Category:Materials database]]
 
[[Category:Materials database]]

Latest revision as of 13:47, 4 August 2022

Flying saucer dress
MFA# 1998.239

Description

Polyester knit dress
MFA# 2004.691
Polyester fibers at 200x Transmitted light (left) Polarized light (right)

A manufactured fiber in which the fiber-forming substance is any long chain synthetic polymer composed of at least 85% by weight of an ester of dihydric alcohol and terephthalic acid (Federal Trade Commission definition). The first viable polyester fiber (Terylene) was developed by English chemists, J. R. Whinfield, and J.T. Dickson, in 1941. It was first sold in the U.S. as Dacron in 1951 and is now the most widely used fiber, even surpassing cotton. Polyester is strong and resistant to shrinking, stretching, creasing, insects and most chemicals. The specific properties, however, vary significantly depending on the type of polyester fiber. Many are modified to increase flame, crush or oil resistance. The fiber cross section is often made into different shapes to change the feel and appearance of the fibers. Polyester is primarily used in clothing and home furnishings. It is often blended with Wool, Cotton, rayon, or Flax.

For polyester fiber identification, see http://cameo.mfa.org/wiki/Category:FRIL:_Polyester

Synonyms and Related Terms

polyester fibre; Dacron (originally called Fiber V) [DuPont]; Terylene [ICI]; Avlin; Beaunit; Tergal [Rhone-Poulenc]; Teteron; Trevira; Crimplene; Diolene; Fortrel [Wellman]; Grilene; Thermoloft; Microloft; Terital; Pellon; Reemay; Kodel [Eastman Chemical]; polyethylene terephthalate; PET; Encron; Spectran; Zephran; Polyester (Deut.); polister (Esp.); polyester (Fr., Sven.); poliestry(Pol.);

Risks

  • Degrades in direct sunlight.
  • Resistant to insects and microorganisms.
  • Absorbs and holds oils.
  • Builds up static charge.
  • Polyester is difficult to ignite.
  • Burns with a shiny, yellow-orange, sooty flame and sweet smell.
  • Self-extinguishing when flame source is removed.
  • Ash is hard.

SEM

Dacron200m.jpg

SEM

Polyester200mm.jpg

SEM

Polyester400mm.jpg

SEM

Polyesterfibvt.jpg


Physical and Chemical Properties

Resistant to weak acids, weak alkalis, bleach and most organic solvents. Degrades in strong alkalis, strong acids, cresol. Fibers are smooth. Cross section = circular, trilobal or polygon. Moisture regain 0.1-0.4%; Tenacity = 2.2-9.5 g/denier; Elongation = 10-50%

Melting Point 238-290
Density 1.23-1.38
Refractive Index 1.54, 1.72

Comparisons

Properties of Synthetic Fibers

Fiber Burn Tests

Additional Images

Resources and Citations

  • M. Joseph, Introductory Textile Science, Holt Reinhold & Winston, Fort Worth, 1986, p. 135.
  • G.Cook, Handbook of Textile Fibres:II. Man-made Fibres, 5th edition, Merrow Publishing Co., Durham, England, 1984. p.328
  • G.S.Brady, Materials Handbook, McGraw-Hill Book Co., New York, 1971 Comment: p. 626
  • Marjorie Shelley, The Care and Handling of Art Objects, The Metropolitan Museum, New York, 1987
  • Richard S. Lewis, Hawley's Condensed Chemical Dictionary, Van Nostrand Reinhold, New York, 10th ed., 1993
  • Hoechst Celanese Corporation, Dictionary of Fiber & Textile Technology (older version called Man-made Fiber and Textile Dictionary, 1965), Hoechst Celanese Corporation, Charlotte NC, 1990
  • Rosalie Rosso King, Textile Identification, Conservation, and Preservation, Noyes Publications, Park Ridge, NJ, 1985
  • Matt Roberts, Don Etherington, Bookbinding and the Conservation of Books: a Dictionary of Descriptive Terminology, U.S. Government Printing Office, Washington DC, 1982
  • Identification of Textile Materials, The Textile Institute, Manchester, England, 1985
  • The American Heritage Dictionary or Encarta, via Microsoft Bookshelf 98, Microsoft Corp., 1998
  • Website: www.fabrics.net