Difference between revisions of "Mass spectrometry"
(username removed) |
JLBoutaine (talk | contribs) |
||
Line 1: | Line 1: | ||
== Description == | == Description == | ||
− | + | In mass spectrometry, an instrument is used to produce ions from molecules. Two common ways of doing this are bombarding the sample either with a beam of electrons (electron ionization) or with small molecules such as methane (chemical ionization). The initial ion, called the molecular ion, often undergoes fragmentation into a pattern of smaller molecular weight ions. The ions are separated according to their mass-to-charge ratio and their relative intensities, producing a mass spectrum. In a quadrupole instrument, the ions produced in the source enter a high-vacuum area between rod electrodes maintained at opposite polarity. The application of varying radio frequencies and DC and AC voltages allows only ions with specific mass-to-charge ratios to be ejected to the detector. In ion trap mass spectrometers, the ionization and storage of ions occur in the same location. The ion trap electrodes create a three-dimensional electric field that holds the ions. Application of an appropriate radio frequency voltage is then used to eject ions with specific mass-to-charge ratios. Mass spectrometers frequently serve as detectors for gas or liquid chromatographs | |
== Synonyms and Related Terms == | == Synonyms and Related Terms == |
Revision as of 09:49, 19 February 2014
Description
In mass spectrometry, an instrument is used to produce ions from molecules. Two common ways of doing this are bombarding the sample either with a beam of electrons (electron ionization) or with small molecules such as methane (chemical ionization). The initial ion, called the molecular ion, often undergoes fragmentation into a pattern of smaller molecular weight ions. The ions are separated according to their mass-to-charge ratio and their relative intensities, producing a mass spectrum. In a quadrupole instrument, the ions produced in the source enter a high-vacuum area between rod electrodes maintained at opposite polarity. The application of varying radio frequencies and DC and AC voltages allows only ions with specific mass-to-charge ratios to be ejected to the detector. In ion trap mass spectrometers, the ionization and storage of ions occur in the same location. The ion trap electrodes create a three-dimensional electric field that holds the ions. Application of an appropriate radio frequency voltage is then used to eject ions with specific mass-to-charge ratios. Mass spectrometers frequently serve as detectors for gas or liquid chromatographs
Synonyms and Related Terms
MS