Aerogel
Description
A generic term for a material Aerogels are 3-D nanostructures of non-fluid colloidal interconnected porous networks consisting of loosely packed bonded particles that are expanded throughout its volume by gas and exhibit ultra-low density and high specific surface area. Aerogels are normally synthesized through a sol–gel method followed by a special drying technique such as supercritical drying or ambient pressure drying. The fascinating properties of aerogels like high surface area, open porous structure greatly influence the performances of energy conversion and storage devices and encourage the development of sustainable electrochemical devices. Therefore, this review describes on the applications of inorganic, organic and composite aerogel nanostructures to dye-sensitized solar cells, fuel cells, batteries and supercapacitors accompanied by the significant steps involved in the synthesis, mechanism of network formation and various drying techniques.
An Aerogel 3-layer mat consisting of a core of Pyrogel XTE encompassed between layers of E-Glass Needle Mat fiberglass tissue (Skanacid A/S) was found to provide optimal fire protection in a 2023 study (Praestegaard et al.) when used as a cover over a wooden chair.
Synonyms and Related Terms
Applications
- Fire protection
Risks
Physical and Chemical Properties
- Can withstand temperatures up to 1200C
- Very lightweight
Working Properties
- Cannot be fashioned into shaped covers inhouse; must be sewn to measurement by the factory
- Constructed 3-layer mat is very heavy, dense and hard to fold
Resources and Citations
- Praestegaard L., G. Sorig Thomsen, K. Woer 'Before the Fire: Experiments on Fire-Protecting Cover Materials', Studies in Conservation, Vol. 68 (1), pp. 1-8, 2023.
- Alwin, S., Sahaya Shajan, X. Aerogels: promising nanostructured materials for energy conversion and storage applications. Mater Renew Sustain Energy 9, 7 (2020).