Glazing types, generic

From CAMEO
Revision as of 12:42, 18 September 2023 by MDerrick (talk | contribs)
Jump to navigation Jump to search

Description

Any optically transparent thermoplastic sheet that may be used as a replacement for window glass. Most commonly used polymer types include acrylics, polycarbonates, and polyesters.

Polymer Advantages/Strengths Limitations Applications Brand names
Acrylic (PMMA) Optically clear; lightweight; good dimensional stability; available in many sizes and shapes; forming does not affect clarity; resistant to UV light and weathering; good moldability; recyclable (type 7) Shelves can sag/crack under weight; can be broken, scratched, shattered; not resistant to aromatic HCs Display cases, light fixtures, transparent shelves for lightweight materials, indoor and outdoor signage; UV grades available Acrylite; Altuglas; Lucite; Optix; Plexiglas; PMMA Brands
Polycarbonate (PC) High strength and stiffness; lightweight; easy to machine; impact resistant; heat resistant to 135C; flame retardant; abrasion resistant; can accept printing temps to 260-300C; recyclable (type 7) Attacked by hydrocarbons, oil and bases; hot water immersion reduces physical properties; UV stabilizers needed to minimize UV degradation has poor stress cracking performance Bullet proof windows and doors, windshields; headlamps; safety helmets; , visors in sporting gear, signage; UV grade signs for outdoor use Lexan; Tuffak (formerly Makrolon); Palsun; Trizod; PC brands
Polyester Terephalate (PET) Low gas permeability; strong; lightweight; doesn’t break or fracture; safe for foods and beverages; excellent resistance to alcohols, oils, and acids; most often used for 3D printing; recyclable (type 1) Low impact strength, low moldability; easily degrades in UV light Films and sheets; fibers; food and beverage containers; geotextiles, electronics Mylar; Melinex; PET Brands
Polyethylene (LDPE) Very lightweight; flexible; good transparency; high impact strength; resistant to acids and bases; good weathering resistance; very low water absorption; recyclable (type 4) Low strength, stiffness; susceptible to stress cracking; high gas permeability; highly flammable; cannot be welded using high frequency Films, bags, bottles, tubing, laminates, extrusion molding Volara; Tyvek; Tupperware; Plastazote; Correx; Polythene; PE brands
Polyethylene (HDPE) Excellent chamical resistance; high tensile strength; semi-flexible; good weathering resistance, low water absorption; excellent moisture barrier; recyclable (type 2) Translucent to opaque; susceptible to stress cracking; high mold shrinkage; cannot be welded using high frequency Hollow plastic products, pipes; crates; ice boxes, trash cans, wiring and cables ; ropes and nets Volara; Tyvek; Tupperware; Plastazote; Correx; Polythene; PE brands
Transparent Polypropylene (PP) Inexpensive but difficult to obtain transparent sheets unless clarifying additives are used; good stiffness and barrier properties; durable; resistant to stress cracking; recyclable (type 5) Highly flammable; sensitive to UV and microbes; poor resistance to impact and scratches; poor paint adhesion; adversely affected by contact with metals Packaging, storage boxes; textiles, pipes, automobiles; PP Brands
Rigid PVC (Clear), unplasticized Lightweight; 'water clear' clarity; optional high-impact and UV resistance with additives; formable; abrasion resistant; high fire rating; recyclable (type 3) Not easy to recycle; only flexible when plasticized; poor heat stability; releases chlorine with degradation; difficult to melt Window frames, house siding; pipes, laminates car seate backs credit cards, traffic signs Geon; Dural; Komacel; Komatex; Forex; sintra; PALIGHT; PVC brands
Transparent ABS (MABS) High rigidity and dimensional stability; good weldability; high impact and abrasion resistance; good insulating properties; often used in 3d printing; recyclable (type 9) Poor weathering resistant; burns easily; poor solvent resistance; low continuous service temperature; often blended with other polymers Usually reinforced with fibers or minerals or blended with other polymers; used in autos, appliances, household goods, and electronics Abson; Cycolac; ABS brands

Physical and Chemical Properties

Polymer Melt Temperature C Extrusion Temperature C Density g/ml RI Visible light transmission (%) Haze (%) Shrinkage % Water absorption % Hardness Shore D Flex. Mod. Gpa (Bending stiffness) Tensile strength Mpa Izod impact J/m Coeffiient of Linear Thermal Expansion X105/C Fire Resistance (LOI) % Link
Acrylic (PMMA) 200-250 180-250 1.17 1.49 80-93 0.1-2.6 0.2-0.8 0.29-0.42 90-99 2.5-3.5 38-70 10-25 5-9 19-20 PMMA Properties
Polycarbonate (PC) 230-260 260-300 1.2 1.585 86-91 0.2-2.7 0.7-1.0 0.1-0.2 90-95 2.2-2.5 55-77 80-650 7-9 24-25 PC Properties
Polyester Terephalate (PET) 280-310 279-290 1.3-1.4 1.575 70-92 0.20-5.1 0.2-3.0 0.1-0.2 85-95 2.8-3.5 45-70 140 6-8 23-25 PET Properties
Polyethylene (LDPE) 105-115 0.92-0.94 1.476 4.4-94 1.3-27.5 2-4 0.005-0.015 40-50 0.245-0.335 10-20 no break 10-20 17-18 PE Properties
Polyethylene (HDPE) 120-140 0.94-0.97 80 6 1.5-4 0.005-0.01 60-70 0.75-1.575 25-45 20-220 6-11 17-18 PE Properties
Tr.Polyprop (PP) 160-165 200-300 0.9 1.347 85-90 11 1-3 0.01-0.1 70-83 1.2-1.6 20-40 27-107 6-17 17-18 PP Properties
Rigid PVC (Clear), unplasticized 170-210 1.35-1.5 1.381 80-87 2.5 0.1-0.6 0.03-0.4 65-90 2.1-3.5 35-60 20-110 5-18 40-45 PVC Properties
Tr. ABS (MABS) 210-270 210-240 1.02-1.21 1.52 86 3 0.7-1.6 0.5-1.8 100 1.6-2.4 30-48 20-160 7-15 19 ABS Properties

Resources and Citations

Retrieved from "https://cameo.mfa.org/index.php?title=Glazing_types,_generic&oldid=96486"