Synthetic fiber

From CAMEO
Revision as of 13:35, 14 October 2024 by MDerrick (talk | contribs)
Jump to navigation Jump to search
Synthetic fibers dress
MFA# 1998.37

Description

MFA Acc. #: L-R 27.2008

Fibers manufactured from substances that have been produced or modified by chemical reactions. Artificial fibers were first made in 1842 when molten glass was formed into filaments. By the late 1880s, man-made fabrics were being made from Cellulose nitrate and rayon fibers. Current examples include: acetate, acrylic, alginic, anidex, aramid, azlon, casein, cupro, nylon, novoloid, nytril, modacrylic, modal, olefin, polyester, saran, spandex, Sulfar, triacetate, vinal, and vinyon.

MFA Acc. #: L-SE 1071.5.1

Properties of Synthetic Fibers (Part 1)

Fiber Composition Development date Common trade name Density Denier (g/9000m) Tenacity (g/denier) Elongation at break (%) Initial modulus Moisture
regain (%)
acetate cellulose triacetate 1919 Celanese; Arnel;
Tenite
1.25-1.35 1.1-1.4
(dry); 0.65-
0.75 wet)
25-35 (dry);
35-45 (wet)
35-40 6.5
acrylic >85% acrylonitrile 1950 Acrilan, Creslan, Courtelle, Orlon 1.16-1.18 2-8 2-3.6 (dry) 20-55 25-63 1.0-3.0
aramid (meta) poly-m-phenylene terephthalamide Nomex, Conex 1.38 2-5 3-6 2-30 130-150 3.5
aramid (para) poly-p-phenylene terephthalamide 1965 Kevlar 1.44 1.0-1.5 25-30 3-6 500-
1000
7.0
azlon protein 1930s Aralac, Ardil, Lanital 1.25-1.3 0.9-1.1
(dry); 0.3-
0.6 (wet)
60-70 14
modacrylic 35-85% acrylonitrile 1949 Dynel; Verel, SEF 1.35-1.37 2-8 1.8-2.5
(dry); 1.7-
2.4 (wet)
35-48 25-56 0.4-4.0
nylon 6 polycaprolactam 1939 Perlon; Kapron, Power silk 1.14 1.5-5 3.8-8.3
(dry); 3.5-
7.1 (wet)
16-50 (dry);
19-55 (wet)
25-35 3.5-5.0
nylon 6,6 polyhexamethylene adipamide 1935 Fiber 66; Antron; Stainmaster 1.14 1.5-5 4.6-9.0
(dry); 4.0-
7.7 (wet)
19-40%
(dry); 32-
46% (wet)
33-46 3.8-4.5
nytril >85% vinylidene dintrile 1955;
discontinued in 1970s
Darvan 1.18 2.0 (dry);
1.7 (wet)
30 2-3
polyester polyester terephthalate 1941 Dacron, Terylene; Hollytex 1.5-5 2.2-9.5 10-50 25-50 0.1-0.4
polyethylene high density polyethylene 1954 Tyvek; Reevon 0.95-0.96 2-10 5.0-8.0 14-20 <0.1
polypropylene polypropylene 1957 Herculon, Marvess 0.85-0.94 2-10 3.5-9.0 15-35 29-45 <0.1
polyurethane >85%polyurethane 1958 spandex, Lycra 1.20-1.25 2.5-20 0.5-1.5 500-700 0.3-1.2
polyvinyl chloride >85% vinyl chloride units vinyon;
Evilon, Thermovyl
1.38-1.40 2.7-3.0 (wet
or dry)
12-20 0
rayon (cupro) regenerated cellulose 1890 Cuprama; Cupresa 1.54 2-3 1.7-2.3
(dry); 1.1-
1.135 (wet)
10-17 (dry);
17-23 (wet)
11-12.5
rayon (viscose) regenerated cellulose 1892 Avtex 1.46-1.54 2-3 2.0-2.6
(wdry); 1.0-
1.5 (wet)
13-15 (dry);
20-40 (wet)
11-16.6
vinal >50% vinyl alcohol units 1924 Synthofil; Vinylon 1.26-1.30 3.0 -8.5
(dry); 3.2-
7.6 (wet)
9-26 (dry);
10-27 (wet)
3.0-9.0

Synonyms and Related Terms

synthetic fibers; man-made fiber; manmade fiber; man-made fibre; fibras sintéticas(Esp.)

For easy printing and to download

Properties of Synthetic Fibers

Fiber Burn Tests

Resources and Citations

  • Hoechst Celanese Corporation, Dictionary of Fiber & Textile Technology (older version called Man-made Fiber and Textile Dictionary, 1965), Hoechst Celanese Corporation, Charlotte NC, 1990
  • Rosalie Rosso King, Textile Identification, Conservation, and Preservation, Noyes Publications, Park Ridge, NJ, 1985
  • Marjory L. Joseph, Introductory Textile Science, Holt, Rinehart and Winston, Fort Worth, TX, 1986
  • J.Gordon Cook, Handbook of Textile Fibres:II Man-made Fibres, Merrow Publishing Co. , Durham, England

Retrieved from "https://cameo.mfa.org/index.php?title=Synthetic_fiber&oldid=99641"